The prevalence of diabetes is increasing rapidly, and type 2 diabetes now accounts for 20 to 50% of cases of new-onset diabetes in young people. Electrolyte disturbances are common in patients with diabetes and may be the result of an altered distribution of electrolytes related to hyperglycemia-induced osmotic fluid shifts or of total-body deficits brought about by osmotic diuresis. Complications from end-organ injury and the therapies used in the management of diabetes may also contribute to electrolyte disturbances. In this review, we highlight the ways in which specific electrolytes may be influenced by dysregulation in glucose homeostasis.

**SODIUM**

Increases in plasma glucose concentration can lead to changes in plasma sodium concentration through several mechanisms. Elevations in glucose concentration increase plasma tonicity, creating an osmotic driving force that favors the movement of water from the intracellular space to the extracellular space, thereby diluting the extracellular concentration of sodium. The plasma sodium concentration is usually low as a result of this osmotic flux of water. Increased or normal plasma sodium concentrations in the presence of hyperglycemia indicate a clinically significant deficit in total body water. A consensus statement and clinical practice guidelines on the management of hyperglycemic crises in adults recommend the addition of a correction factor of 1.6 mg per deciliter to the measured plasma sodium concentration for each 100 mg per deciliter (5.6 mmol per liter) of glucose above 100 mg per deciliter to account for the dilutional effect of glucose. Correcting the plasma sodium concentration in patients with glycemia helps to assess the magnitude of the deficit of sodium and water and provides a reasonable initial estimate of the required tonicity of replacement fluids during the course of therapy. Correction factors predicting plasma sodium concentration after the normalization of hyperglycemia vary from a low of 1.35 mmol per liter to as high as 4.0 mmol per liter (for additional discussion, see the Supplementary Appendix, available with the full text of this article at NEJM.org). Such variability in the range of correction factors appears to be due to the fact that patients with preserved renal function represent an open hyperglycemic system that introduces a number of variables, all difficult to quantify, and renders the use of a standardized correction factor imprecise. It should be emphasized that the corrected sodium concentration at the time of sampling does not account for the effects of osmotic diuresis and fluid intake during treatment, both of which are highly variable and unpredictable. Frequent calculations of the corrected sodium concentration, along with...
Electrolyte and Acid–Base Disturbances in Diabetes

The New England Journal of Medicine
August 6, 2015

The stabilization of hemodynamics with normal saline is the initial goal of fluid therapy in patients with a hyperglycemic crisis. During the course of care, a switch to more hypotonic fluids may be required for patients in whom a deficit in total body water has been determined. Isotonic saline infusion should be continued when the corrected plasma sodium concentration is reduced. As Kamel and Halperin recently stated, the fluids selected for administration should minimize the drop in effective osmolality, particularly during the first 15 hours of therapy, in order to reduce the risk of cerebral edema. Because children with diabetic ketoacidosis are at particular risk for cerebral edema, some degree of hypernatremia is acceptable during the course of treatment to minimize this complication. Use of the correction factor in patient care can be demonstrated in the case of a 29-year-old man with diabetic ketoacidosis who presents with a plasma glucose concentration of 1040 mg per deciliter (57.7 mmol per liter) and the following concentrations of electrolytes: sodium 135 mmol per liter, potassium 5.4 mmol per liter, chloride 97 mmol per liter, and bicarbonate 10 mmol per liter. When a correction factor of 1.6 is used, the corrected plasma sodium concentration is estimated to be approximately 150 mmol per liter (for a further discussion of the use of fluid therapy when treating a patient with diabetic ketoacidosis, see the Supplementary Appendix).

Certain medications that are prescribed for the management of diabetes mellitus are also associated with hyponatremia. Tricyclic antidepressants, which are used to treat diabetic neuropathy, are known to stimulate the release of vasopressin. Oral hypoglycemic agents, such as chlorpropamide and tolbutamide, can cause hyponatremia, possibly by augmenting the effect of endogenous vasopressin at the level of the renal collecting duct. Insulin stimulates the arginine–vasopressin–dependent expression of aquaporin-2 in the renal collecting duct, possibly augmenting the hydro-osmotic effect of vasopressin when circulating levels are increased in response to other influences. The latter effect may explain the reported association between insulin use and hospital-acquired hyponatremia in patients with diabetes. Hyponatremia can also develop if a patient with uncontrolled diabetes has marked hypertriglyceridemia, even when the sodium concentration in plasma water is normal — a phenomenon called pseudohyponatremia (see the Supplementary Appendix for additional discussion).

Potassium

Insulin deficiency, which is more common in type 1 diabetes than in type 2 diabetes, is an important factor in the net efflux of potassium from the cell. In patients with type 2 diabetes, the insulin-mediated uptake of glucose is impaired, but the cellular uptake of potassium remains normal, a situation that is consistent with the divergence of intracellular pathways that follows activation of the insulin receptor. Hyperkalemia can be caused by an increase in plasma tonicity that results from the redistribution of potassium from the intracellular space to the extracellular space. The efflux of potassium from the cell is due to intracellular dehydration, which results from the osmotically induced, transcellular movement of water. This movement creates a favorable gradient for the efflux of potassium. The administration of dextrose in water as a short-term therapy for hyperkalemia without the concomitant administration of insulin may worsen hyperkalemia in patients with diabetes, since the endogenous secretion of insulin in these patients may be insufficient or unpredictable and may thereby result in increases in plasma tonicity. Consider a 35-year-old woman with diabetic ketoacidosis whose laboratory values are as follows: sodium 143 mmol per liter, potassium 5.8 mmol per liter, chloride 97 mmol per liter, bicarbonate 12 mmol per liter, creatinine 1.4 mg per deciliter (123.8 μmol per liter), blood urea nitrogen 28 mg per deciliter (10 mmol per liter), and glucose 680 mg per deciliter (37.8 mmol per liter). On examination, orthostatic hypotension is noted. Initial treatment should consist of 0.9% normal saline to stabilize hemodynamic status but with no added potassium chloride, since the plasma potassium concentration is elevated (see the Supplementary Appendix for a discussion of potassium management in this patient).
Hyperkalemia is frequently present on admission in patients with diabetic ketoacidosis, even though total-body potassium is reduced. This condition is caused by potassium wasting, which results from the increased delivery of sodium to the distal nephron coupled with increased mineralocorticoid activity. The kidneys are not a site of primary involvement in diabetic ketoacidosis; in patients with normal renal function, the kidney compensates with an increase in the net excretion of acid, which is reflected primarily in high levels of urinary ammonium. When there is a loss of organic acid anions, the amount of ammonium in the urine can be estimated by measurement of the urinary osmolal gap, which is defined as the difference between measured urinary osmo-
Electrolyte and Acid–Base Disturbances in Diabetes

lality and estimated urinary osmolality, which is derived from the following equation:

\[
\text{Urinary osmolality} = \left(2 \times \text{urinary Na}\right)^+ + \left(2 \times \text{urinary K}\right)^+ + (\text{urinary urea nitrogen in milligrams per deciliter} + 2.8) + (\text{urinary glucose in milligrams per deciliter} + 18)
\]

In the absence of glycosuria, the glucose portion of the equation can be deleted. A large increase in the urinary osmolar gap suggests increased excretion of ammonium coupled with either chloride or ketoanions, a process that is consistent with the extrarenal nature of the acidosis and intact renal function. However, in some patients with diabetic acidosis, the gap may be lower in the absence of a defect in the renal response to the acid load. Such a response would occur in patients with a low glomerular filtration rate (GFR) when the filtered load of sodium is reduced. The resultant decrease in the rate of ATP expenditure required for sodium
transport and the oxidation of ketoacid anions in cells of the proximal tubule lower the utilization of glutamine and hence diminish the rate of ammoniogenesis. Measurement of the urinary osmolal gap is most useful in the evaluation of patients with hyperchloremic acidosis and a normal gap. (This condition typically develops during the recovery phase of diabetic ketoacidosis, after normalization of the anion gap.) The urinary osmolal gap is used to determine whether there is an appropriate increase in the urinary excretion of ammonium, which leads to resolution of the acid–base disorder. A low urinary osmolal gap in patients with persistent hyperchloremic normal-gap acidosis suggests tubular dysfunction.

In the past, nitroprusside tablets or reagent strips were used to detect ketoacids. Despite recent advances that permit direct quantification of β-hydroxybutyrate levels, measured concentrations of ketone bodies often cannot completely account for the increased anion gap, and in many patients hyperlactatemia may be contributory. Lactate levels may increase in response to hyperadrenergic activity, even in the absence of tissue hypoperfusion. Another contributor to the increased gap is the accumulation of L-lactic acid caused by the increased production of methylglyoxal through the glyoxalase pathway. Although factors such as acidosis, hyperosmolality, and cerebral hypoperfusion have been implicated in the altered sensorium that is often present in patients with diabetic ketoacidosis, we speculate that L-lactate may also play a role.

The treatment of diabetic ketoacidosis involves the administration of insulin and intravenous fluids to correct volume depletion. Alkali therapy is generally not required because insulin administration will slow the rate of ketoacid production, and the oxidation of ketoanions will lead to the regeneration of bicarbonate, but there are certain circumstances in which alkali therapy may be indicated. Alkali therapy has been linked to an increased risk of cerebral edema in children. Metformin, which is used in the treatment of type 2 diabetes, can in rare circumstances lead to lactic acidosis, but the risk is quite low and is in fact indistinguishable from the background rate of lactic acidosis among patients with type 2 diabetes. The risk increases when renal function declines abruptly; because metformin is cleared by the kidneys, metformin levels become elevated when renal function is impaired. For instance, a patient with clinically stable type 2 diabetes who is being treated with metformin in whom gastroenteritis then develops will be subject to volume depletion. The resulting increase in efferent arteriolar tone mediated by angiotensin II will raise the intraglomerular pressure to counterbalance the decrease in renal perfusion, thereby stabilizing the GFR and preventing the accumulation of metformin. If such a patient is receiving an angiotensin-converting-enzyme (ACE) inhibitor or angiotensin-receptor blocker (ARB), this counterbalancing effect will be lost because of the decrease in efferent arteriolar tone that results from treatment with inhibitors of the renin–angiotensin system. Metformin accumulates if there is a severe reduction in the GFR, which may lead to lactic acidosis. Nonsteroidal antiinflammatory drugs can increase the risk of metformin accumulation because they increase afferent arteriolar tone, especially in patients with decreased renal perfusion, thereby causing an abrupt and significant reduction in the GFR. Metformin is readily removed with dialysis therapy since it has a low molecular weight and does not bind proteins; however, prolonged extracorporeal therapy is generally required to lower the level of metformin, since it has a high volume of distribution and two-compartment elimination kinetics.

**Hyperkalemic Renal Tubular Acidosis**

Hyperkalemic renal tubular acidosis (type 4 renal tubular acidosis) is a common condition among patients with diabetes and overt nephropathy. The disease is characterized by disturbances in nephron function, which lead to impaired renal excretion of hydrogen and potassium and result in hyperkalemia and a hyperchloremic normal-gap acidosis (Fig. 3). Type 4 renal tubular acidosis may be present even in
Electrolyte and Acid–Base Disturbances in Diabetes

Figure 3. Pathogenesis of the Electrolyte Pattern in Type 4 Renal Tubular Acidosis.

In normal circumstances, the reabsorption of sodium in the collecting duct, driven by aldosterone, generates negative potential in the lumen, which serves as a driving force for the secretion of potassium by the principal cell and of hydrogen ions by the α-intercalated cell. Impaired sodium reabsorption in the principal cell — caused by either hyporeninemic hypoaldosteronism or impairment in the function of the collecting duct — leads to a decrease in luminal electronegativity. This decrease impairs secretion of potassium and of hydrogen ions, contributing to hyperkalemia and metabolic acidosis. The hyperkalemia further impairs acidification by decreasing the amount of ammonium available to act as a urinary buffer. First, hyperkalemia decreases the production of ammonium in the proximal tubule. The precise mechanism by which this occurs is not currently known, but it may involve the entry of potassium into cells in exchange for protons, which would raise the intracellular pH. Second, the transport of ammonium in the thick ascending limb is inhibited by the large increase in the concentration of potassium in the lumen, which effectively competes with ammonium for transport on the sodium–potassium–chloride cotransporter. Ammonium normally exits the basolateral surface of the cell through sodium–proton exchanger 4 (NHE4). The net excretion of acid decreases as a result of the limited availability of a buffer combined with a decreased capacity for the secretion of hydrogen ions. The urinary osmolar gap is not increased, which indicates that there is little or no excretion of ammonium in the urine. Patients in whom type 4 renal tubular acidosis is caused by a defect in mineralocorticoid activity typically have a urinary pH of less than 5.5, reflecting a more severe defect in the availability of ammonium than in the secretion of hydrogen ions. In patients with structural damage, the secretion of hydrogen ions is impaired throughout the collecting duct (both cortical and medullary segments) such that the urinary pH may be more alkaline than it is in patients who have impaired mineralocorticoid activity alone.
<table>
<thead>
<tr>
<th>Disturbance</th>
<th>Mechanism or Cause</th>
<th>Comment</th>
<th>Treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hyponatremia</td>
<td>Osmotically induced movement of water from intracellular to extracellular space; increased thirst and water intake; increased secretion of vasopressin, which limits renal excretion of water</td>
<td>Net effect of increased glucose levels in blood is movement of water from intracellular to extracellular compartments; renal loss of water caused by glycosuria determines sodium concentration</td>
<td>In hyperglycemic crisis, after fluid resuscitation, continue administration of 0.9% normal saline for corrected sodium concentration of &lt;135 mmol/liter</td>
</tr>
<tr>
<td></td>
<td>Medications used in treatment of diabetes</td>
<td></td>
<td>Withdraw offending medication, if clinically feasible</td>
</tr>
<tr>
<td>Hypernatremia</td>
<td>Hypotonic fluid loss in urine caused by osmotic diuretic effect of glycosuria</td>
<td>During initial treatment of hyperglycemic crisis, effective plasma osmolality should not be reduced during first 15 hr of treatment, in order to minimize risk of cerebral edema</td>
<td>Infuse 0.9% normal saline (with 30–40 mmol potassium chloride/liter if potassium required) to maintain effective plasma osmolality in the first 15 hr of therapy, then use 0.45% sodium chloride if corrected sodium concentration is normal or &gt;145 mmol/liter</td>
</tr>
<tr>
<td>Hypokalemia</td>
<td>Cell shift in which potassium moves from extracellular to intracellular space; may occur after administration of insulin, correction of hypertonicity, or β-adrenergic stimulation*</td>
<td>Increased renal excretion results from increased delivery of sodium to collecting duct in presence of increased mineralocorticoid activity</td>
<td>During treatment of hyperglycemic crisis with 3.5–5.2 mmol potassium/liter, add 20–40 mmol potassium to each liter of fluid</td>
</tr>
<tr>
<td>Hyperkalemia</td>
<td>Cell shift intracellular to extracellular space—caused by insulin deficiency or hypertonicity (not metabolic acidosis)*</td>
<td>Cell shift causes transient hyperkalemia</td>
<td>In hyperglycemic crisis in which potassium concentration is &gt;5.2 mmol/liter, do not add potassium to replacement fluids (recheck potassium concentration every 2 hr)</td>
</tr>
<tr>
<td></td>
<td>Impaired renal excretion</td>
<td>Impaired renal excretion causes chronic hyperkalemia</td>
<td>In type 4 renal tubular acidosis, start low-potassium diet, discontinue offending medications if possible, maximize use of diuretics, correct acidosis if present, consider fluoroocortisone in absence of fluid overload or hypertension</td>
</tr>
<tr>
<td>Anion-gap metabolic acidosis</td>
<td>Fully established ketoacidosis (volume depletion, often with reduced glomerular filtration rate)</td>
<td>Levels of l-lactate and α-lactate are increased in diabetic ketoacidosis</td>
<td>Initiate fluid resuscitation and insulin; bicarbonate therapy not routinely indicated, but if pH ≤6.9, infuse 100 mmol bicarbonate in 400 ml sterile water plus 20 mmol potassium chloride at rate of 200 ml/hr over 2 hr and repeat until pH ≥7.0</td>
</tr>
<tr>
<td>Hyperchloremic normal-gap metabolic acidosis</td>
<td>In the early phase or in the recovery phase of diabetic ketoacidosis</td>
<td>Hypoaldosteronism or disturbances in function of collecting duct account for impaired excretions of potassium and hydrogen in type 4 renal tubular acidosis</td>
<td>Monitor patient; resolution will occur during recovery phase of diabetic ketoacidosis unless renal function is impaired†</td>
</tr>
<tr>
<td>Renal tubular acidosis of renal insufficiency, type 4 renal tubular acidosis</td>
<td></td>
<td></td>
<td>In type 4 renal tubular acidosis, treat hyperkalemia as indicated above</td>
</tr>
<tr>
<td>Metabolic alkalosis</td>
<td>Vomiting, which often occurs in patients with diabetic ketoacidosis and diabetic gastro-paresis</td>
<td>Plasma bicarbonate concentration higher than expected given extent of increase in anion gap in ketoacidosis</td>
<td>Restore volume of extracellular fluid with 0.9% normal saline, correct potassium deficit if present</td>
</tr>
<tr>
<td>Administration of loop or thiazide diuretics</td>
<td></td>
<td></td>
<td>Discontinue drug, if feasible, administer chloride-containing solutions intravenously if indicated</td>
</tr>
<tr>
<td>Disturbance</td>
<td>Mechanism or Cause</td>
<td>Comment</td>
<td>Treatment</td>
</tr>
<tr>
<td>---------------------</td>
<td>-------------------------------------------------------------------------------------</td>
<td>------------------------------------------------------------------------------------------------------------------------------------------------------------</td>
<td>---------------------------------------------------------------------------</td>
</tr>
<tr>
<td>Hypomagnesemia</td>
<td>Renal magnesium wasting caused by osmotic diuretic effect of glycosuria and metabolic acidosis, impaired gastrointestinal absorption, administration of proton-pump inhibitors or thiazide diuretics</td>
<td>Effects of hypoalbuminemia can be corrected by adjustment of serum magnesium concentration to $0.01 \times (40 - \text{measured albumin level in g/liter})$; hypomagnesemia can cause hypokalemia as result of renal potassium wasting and hypocalcemia</td>
<td>Provide magnesium supplement; oral supplements preferred, with intravenous magnesium indicated in symptomatic patients (e.g., those with arrhythmias or neuromuscular irritability); magnesium supplementation may reduce risk of diabetes</td>
</tr>
<tr>
<td></td>
<td>Metabolic acidosis, which increases concentration of ultrafilterable magnesium</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gastrointestinal loss of magnesium as a result of diarrhea, which may occur in autonomic neuropathy</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hypermagnesemia</td>
<td>Insulin deficiency and metabolic acidosis, leading to cell shift in which magnesium flows out of cell</td>
<td>Degree of elevation is mild; correction of acidosis, administration of insulin, and $\beta_2$-adrenergic stimulation can unmask total-body deficit if present</td>
<td>No specific therapy indicated</td>
</tr>
<tr>
<td>Hypocalcemia</td>
<td>Urinary loss of vitamin D–carrying protein in the nephrotic syndrome, altered set point for release of parathyroid hormone</td>
<td>To correct for effect of hypoalbuminemia, add 0.8 mg calcium/dl for every decrease of 1 g/dl in plasma albumin concentration</td>
<td>Correct deficiency in vitamin D, if present</td>
</tr>
<tr>
<td>Hypercalcemia</td>
<td>Volume depletion, thiazide diuretics</td>
<td>Severity usually mild when associated with thiazide diuretics or volume depletion</td>
<td>Restore extracellular volume, discontinue or minimize dose of diuretic</td>
</tr>
<tr>
<td>Hypophosphatemia</td>
<td>Total-body depletion resulting from osmotic diuresis</td>
<td>In diabetic ketoacidosis, treatment with insulin and correction of acidosis unmask total-body deficit</td>
<td>Consider phosphate supplementation — not routinely indicated in diabetic ketoacidosis but is indicated for skeletal-muscle weakness, respiratory suppression, or rhabdomyolysis, with 20–30 mmol potassium phosphate/liter added to replacement fluid; maximal rate of infusion should be no greater than 4.5 mmol/hr to avoid hypocalcemia and hypomagnesemia</td>
</tr>
<tr>
<td>Hyperphosphatemia</td>
<td>Present in diabetic ketoacidosis, as a result of insulin deficiency and metabolic acidosis, advanced chronic kidney disease</td>
<td>Elevated serum concentrations of phosphate can be present despite total-body depletion in diabetic ketoacidosis</td>
<td>In diabetic ketoacidosis, provide insulin therapy and correct acidosis, both of which will correct hyperphosphatemia</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>In diabetic nephropathy, manage hyperphosphatemia as suggested for other causes of chronic kidney disease (e.g., low-phosphate diet, phosphate binders)</td>
</tr>
</tbody>
</table>

* A cell shift refers to the flow of electrolytes into or out of a cell.
† Bicarbonate therapy may be considered when a major fraction of acidemia is caused by normal anion-gap acidosis, since the amount of circulating ketoacid anions available for metabolism to bicarbonate, combined with rapid infusion of saline, can worsen acidemia. Patients with diabetic nephropathy and an estimated glomerular filtration rate of <30 ml per minute may also benefit, since ketoacid oxidation will be reduced.
patients with mild-to-moderate diabetic nephropathy, and the magnitude of the hyperkalemia and acidosis can be disproportionately severe relative to the observed reductions in GFR. A deficiency in circulating levels of aldosterone or disease affecting the collecting duct may lead to type 4 renal tubular acidosis, which results in a defect in the distal secretion of hydrogen ions. In such cases, multiple alterations in the renin–angiotensin system effectively reduce the circulating levels or activity of mineralocorticoids (Table S1 in the Supplementary Appendix). Hyporeninemic hypoaldosteronism and volume expansion occur in many patients with diabetes mellitus. Although these conditions are generally thought to be caused by a reduced GFR in association with the development of diabetic nephropathy, studies in animals show that the direct effects of insulin on receptors in the distal nephron decrease the activity of — lysine-deficient protein kinase 4 (WNK4), which leads to pathophysiological changes similar to those seen in the syndrome of familial hyperkalemic hypertension (pseudohypoaldosteronism type 2).39,40

Most patients do not require treatment for type 4 renal tubular acidosis unless they have a concurrent illness that worsens the hyperkalemia and acidosis. Consequently, the primary goal of therapy is to correct the hyperkalemia. In many instances, reducing the plasma potassium concentration will correct the acidosis. Discontinuing drugs that are known to interfere with the synthesis or activity of aldosterone is the first-line therapy.41 In patients with aldosterone deficiency who have neither hypertension nor fluid overload, the administration of synthetic mineralocorticoids (e.g., fludrocortisone) is effective (Table S1 in the Supplementary Appendix). In most patients with hypertension, the administration of a thiazide diuretic (or, in patients with an estimated GFR of <30 ml per minute, a loop diuretic) is an alternative.41 The administration of 30 to 40 mmol of bicarbonate per day is usually sufficient to raise the plasma bicarbonate level above 20 mmol per liter in patients with persistent metabolic acidosis. The primary complication associated with such therapy is volume overload, although sodium retention is lower with sodium bicarbonate than with sodium chloride in patients with chronic kidney disease.42 The management of type 4 renal tubular acidosis in patients with diabetes can present a therapeutic dilemma regarding the selection of drugs that block the renin–angiotensin system. Consider a 63-year-old man with type 2 diabetes mellitus complicated by diabetic nephropathy who presents with heart failure with a reduced ejection fraction. Laboratory analyses of electrolytes show a sodium level of 141 mmol per liter, potassium 5.2 mmol per liter, chloride 107 mmol per liter, and bicarbonate 19 mmol per liter. Although an ACE inhibitor or ARB would be useful to slow the progression of renal disease and treat the underlying heart failure, these drugs may also increase the risk of life-threatening hyperkalemia (see the Supplementary Appendix for further discussion of the management of this case).

Divalent Cations and Phosphorus

Disturbances in divalent-cation and phosphorus homeostasis are related to hyperglycemia and are thus common in patients with diabetes. Epidemiologic studies suggest that low magnesium intake is associated with an increased risk of diabetes, whereas a higher magnesium intake is associated with a decreased risk of diabetes.43 In addition, hypomagnesemia may impair glucose disposal and contribute to cardiovascular disease, retinopathy, and nephropathy.44 The incidence of hypomagnesemia in patients with type 2 diabetes ranges widely, from 13.5% to 47.7%.45 Causes include poor oral intake and the chronic diarrhea associated with autonomic neuropathy. Proton-pump inhibitors impair the gastrointestinal absorption of magnesium. This effect may be the result of a drug-induced decrease in the pH of the intestinal lumen that alters the affinity of transient receptor potential melastatin-6 and melastatin-7 (TRPM6 and TRPM7) channels on the apical surface of enterocytes for magnesium.46

In patients with diabetic ketoacidosis, the osmotic diuresis resulting from poor glycemic control may lead to renal magnesium wasting. However, serum magnesium levels may be mildly increased as a result of insulin deficiency and
metabolic acidosis, despite the depletion of total body stores. The administration of insulin and the correction of acidosis shift magnesium into cells, with the result that the bodily deficit is unmasked. In addition, increased adrenergic activity may contribute to intracellular shifts in magnesium.\(^4\)\(^7\)

Hypocalcemia is a potential complication of diabetic nephropathy in patients with the nephrotic syndrome, since the nephrotic state leads to urinary loss of 25-hydroxyvitamin D\(_3\) and its carrier protein.\(^4\)\(^8\) Alterations in the set point for parathyroid hormone release and circulating levels in patients with diabetes are reminiscent of those found in hypoparathyroidism, having the potential to exacerbate the tendency for the development of hypocalcemia.\(^4\)\(^9\),\(^5\)\(^0\)

Hypomagnesemia can be a cause of hypocalcemia because magnesium deficiency can result in impaired release of and skeletal resistance to parathyroid hormone. Primary hyperparathyroidism should be considered in patients with diabetes who have hypercalcemia, since in such persons primary hyperparathyroidism occurs at a rate that is several times as high as that in the general population.\(^4\)\(^1\)

Hypercalcemia also occurs in patients with volume depletion, which leads to the increased reabsorption of renal calcium.\(^4\)\(^2\)

Derangements in phosphate metabolism are evident in patients with diabetic ketoacidosis. Hyperphosphatemia is frequently present on admission, with reported levels as high as 17 mg per deciliter\(^5\)\(^3\) owing to insulin deficiency and metabolic acidosis. Insulin treatment and correction of the acidosis causes plasma phosphate concentrations to fall sharply as a result of the shift into cells, unmasking an average total-body deficit of about 1 mmol per kilogram of body weight.\(^2\),\(^4\)\(^4\) Phosphate depletion also results from the urinary losses caused by osmotic diuresis. In the absence of diabetic ketoacidosis, hyperphosphatemia can be present with acute kidney injury or advanced chronic kidney disease (as is also the case in patients without diabetes). Consider a 38-year-old woman with diabetic ketoacidosis whose laboratory values are as follows: sodium 130 mmol per liter, potassium 5.4 mmol per liter, chloride 98 mmol per liter, bicarbonate 10 mmol per liter, glucose 724 mg per deciliter, and phosphate 7.8 mg per deciliter. After 1 day of treatment, the phosphate concentration has decreased to 1.8 mg per deciliter (see the Supplementary Appendix for a discussion of phosphate management in this patient).

Randomized trials of phosphate therapy in patients with ketoacidosis have not shown that this therapy provides clinical benefit; therefore, routine administration of phosphate is not recommended.\(^5\)\(^5\) In patients at risk for potential complications of hypophosphatemia, such as weakness in the heart or skeletal muscles, rhabdomyolysis, or hemolytic anemia, potassium phosphate can be added to replacement fluids. Of course, hypocalcemia and hypomagnesemia are potential complications of phosphate administration (Table 1).

**SUMMARY**

In summary, the dysregulation of glucose homeostasis leads to many direct and indirect effects on electrolyte and acid–base balance. Since the high prevalence of diabetes ensures that clinicians in virtually every medical specialty will interact with these patients, familiarity with related electrolyte abnormalities is important.

No potential conflict of interest relevant to this article was reported.

Disclosure forms provided by the authors are available with the full text of this article at NEJM.org.
53. Franks M, Berris RF, et al. Metabolic
studies in diabetic acidosis; the effect of the administration of sodium phosphate. Arch Intern Med (Chic) 1948;81:42-55.


Copyright © 2015 Massachusetts Medical Society.